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DNA double-strand breaks (DSBs) trigger transient pausing of
nearby transcription, an emerging ATM-dependent response that
suppresses chromosomal instability. We screened a chemical library
designed to target the human kinome for new activities that medi-
ate gene silencing on DSB-flanking chromatin, and have uncovered
the DYRK1B kinase as an early respondent to DNA damage. We
showed that DYRK1B is swiftly and transiently recruited to laser-
microirradiated sites, and that genetic inactivation of DYRK1B or its
kinase activity attenuated DSB-induced gene silencing and led to
compromised DNA repair. Notably, global transcription shutdown
alleviated DNA repair defects associated with DYRK1B loss, suggest-
ing that DYRK1B is strictly required for DSB repair on active chro-
matin. We also found that DYRK1B mediates transcription silencing
in part via phosphorylating and enforcing DSB accumulation of the
histone methyltransferase EHMT2. Together, our findings unveil the
DYRK1B signaling network as a key branch of mammalian DNA
damage response circuitries, and establish the DYRK1B–EHMT2 axis
as an effector that coordinates DSB repair on transcribed chromatin.

DNA damage | transcription | DNA double-strand breaks | DNA repair |
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Repair of DNA double-strand breaks (DSBs) is accompanied
by change in local chromatin architecture and its ongoing

transactions, including transcription (1). Indeed, cells halt gene
expression on DSB-flanking chromatin to prevent collision be-
tween the DNA repair machinery and the transcription apparatus,
which in turn facilitates DNA repair and suppresses chromosomal
instability (2). In this regard, the apical DNA damage kinase ATM
targets a multitude of chromatin-modifying activities (3–5) and
plays multifaceted roles to establish a DSB microenvironment to
suppress local transcription (6). Interestingly, the DNA-dependent
protein kinase (DNA-PK) complex has also been reported to ar-
rest transcription (7) via proteasome-dependent eviction of RNA
polymerase II (RNAPII) (8), although whether ATM and DNA-
PK activities intersect remains undefined. Moreover, while tran-
scription suppression on DSB-flanking chromatin also requires a
growing number of chromatin remodelers and transcription reg-
ulators (9–13), it is currently enigmatic how DSB signals are
propagated and translated to fine-tune local transcriptional ac-
tivities to effect DNA repair processes.
DYRK1B (also known as MIRK) is a member of the evolu-

tionarily conserved family of DYRK kinases, and encodes a dual-
specificity serine/threonine (S/T) protein kinase with implicated
roles in cell differentiation and survival (14, 15). DYRK1B is up-
regulated in human cancers, and several lines of evidence have
shown that DYRK1B maintains cancer cells in their quiescent
state to confer chemoresistance (16, 17), and that pharmaco-
logical inhibition of its kinase activity may offer a means to
sensitize cells to the cytotoxic effects of anticancer therapeutics
(18). Aside from its putative oncogenic properties, DYRK1B is
also involved in gene transcriptional control in growth and de-
velopment (19), and genetic mutations are causally linked with

an inherited form of metabolic syndrome (20). Notably, while
DYRK1B inactivation may contribute to genome instability (21)
and has been reported to reside in DSB repair macromolecular
protein complexes in a proteomic study (22), a role of DYRK1B
in DNA damage response control is not known.

Results
Chemical Screen Identifies DYRK1B as an Activity Required for Transcription
Suppression on DSB-Flanking Chromatin. To isolate novel activities
that orchestrate DSB repair on transcribed chromatin, a kinase
inhibitor library consisting of 760 compounds was examined for
its effect on DSB-induced transcription suppression. To this end,
we took advantage of a previously established transcription re-
porter wherein nascent transcriptional activities can be moni-
tored by local YFP-MS2 accumulation (23). Proximal DSBs can
be induced by 4-hydroxytamoxifen (4-OHT) and Shield-1, which
promote the docking of the estrogen receptor (ER)-fused
FokI-mCherry-LacI nuclease onto LacO arrays (×256) located
upstream of the transcriptional unit to ensure transcription sup-
pression (Fig. 1A). Accordingly, DSBs were induced in reporter
cells pretreated with individual kinase inhibitors, which were sub-
jected to high-content microscopy and automated analyses of cells
positive for YFP-MS2 foci (Fig. 1B). Consistent with a pivotal role
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of ATM in orchestrating DSB responses (24), including DSB-
induced transcription silencing in cis (DISC) (6), chemical
inhibitors that targeted the ATM kinase compromised DISC, as
reflected by the high percentages of cells with YFP-MS2 foci
(Fig. 1C, SI Appendix, Fig. S1, and Dataset S1). We filtered out
kinase targets that reside in the cytoplasm (SI Appendix, Fig. S1A)
and, among the list of nuclear kinase targets, we were drawn to
DYRK1B (Fig. 1C and SI Appendix, Fig. S1B), as it was recently
reported to interact with the DSB response factor RNF169 (22).
We confirmed that chemical inhibition of DYRK1B, much like
that of ATM, attenuated DSB-induced transcription suppression
(Fig. 1D), and that nascent transcription can be inhibited by the
transcription elongation inhibitor 5,6-dichlorobenzimidazole 1-
β-D-ribofuranoside (DRB) (SI Appendix, Fig. S2A). In support of
the idea wherein DYRK1B may encode an ATM effector in
mounting transcription suppression on damaged chromatin, we
found that chemical inhibition of both ATM and DYRK1B com-
promised DISC to the same extent as that observed in ATM
inhibitor-treated cells, suggesting that ATM and DYRK1B may be
epistatic in this DNA damage response (DDR) (Fig. 1E).

DYRK1B Promotes DISC in a Kinase-Dependent Manner. To corrob-
orate that DYRK1B is important in transcription suppression
on damaged chromatin, we depleted DYRK1B using two in-
dependent small interference RNAs (siRNAs) (SI Appendix,
Fig. S2B) and found that DYRK1B silencing led to sustained
transcription despite DSB induction in U2OS-DSB reporter
cells (Fig. 2A). Similar observations were made in cells lenti-
virally transduced with two independent DYRK1B-targeting

guide RNAs (gRNAs) (SI Appendix, Fig. S2 B and C). More-
over, in stark contrast to control cells, we found that DYRK1B-
inactivated cells failed to suppress 5-ethynyl uridine (5-EU)
incorporation at laser-microirradiated sites (Fig. 2 B and C and
SI Appendix, Fig. S2D), indicating that DYRK1B is required to
inhibit nascent transcription at DNA damage sites. Given that
chemical inhibition of ATM or DYRK1B attenuated suppres-
sion of 5-EU incorporation at laser-induced DSBs (SI Appen-
dix, Fig. S2E), we genetically examined whether DYRK1B
kinase activity is important in DISC by reconstituting
DYRK1B-depleted cells with wild-type DYRK1B or its kinase-
inactive mutants K140M and D239A (25, 26). In line with the
requirement of DYRK1B kinase activity in suppressing tran-
scription on damaged chromatin, mutational inactivation of
DYRK1B catalytic activity compromised DISC in reporter cells
(Fig. 2D) as well as in laser-microirradiated cells (SI Appendix,
Fig. S2F). Together, these data firmly establish the DYRK1B
kinase as a transcription control factor at DSBs.

DYRK1B Promotes DISC-Associated Histone Ubiquitylation and RNAPII
Dynamics. Given that ATM mounts DISC by promoting local
H2A ubiquitylation (6), we tested whether chemical inhibition
of DYRK1B may similarly compromise DSB-associated histone
ubiquitylation. Consistently, DYRK1B inactivation led to
marked reduction in H2A ubiquitylation but did not noticeably
affect levels of total ubiquitin conjugates (FK2) or K63-linked
ubiquitin adducts at FokI-induced DSBs (SI Appendix, Fig. S3 A–C).
Moreover, in line with a role in regulating RNAPII-dependent
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Fig. 1. Chemical screen identifies regulators of
transcription at DSBs. (A) Schematic illustration of
the DISC reporter in U2OS-DSB reporter cells. Doxy-
cycline (Dox) induces nascent transcription and local
YFP-MS2 accumulation at the transgene locus. Cell
treatment with 4-OHT and Shield-1 leads to FokI-
induced DSBs and suppression of proximal tran-
scription. Arrowheads denote YFP-MS2 foci. (B)
Workflow depicting the kinase inhibitor library
screen using U2OS-DSB reporter cells. DSB-induced
cells pretreated with each of the 760 kinase inhibi-
tors were subjected to high-content imaging and
automated analyses for YFP-MS2 focus. (C) Ranking
of nuclear kinase inhibitor targets with putative roles
in transcription silencing. (D) FokI-induced DSBs si-
lence transcription in control but not in ATM- or
DYRK1B-inhibited cells. Expression of FokI wild type
(WT) but not its catalytically inactive mutant (D450A)
suppressed doxycycline-induced transcription. Pre-
treatment with ATM inhibitor (ATMi; KU55933) or
DYRK1B inhibitor (DYRK1Bi; AZ191) attenuated DSB-
induced transcription silencing. U2OS-DSB reporter
cells grown on coverslips were transfected with ei-
ther FokI WT or D450A expression construct; 24 h
posttransfection, cells were PFA-fixed and processed
for fluorescence imaging. (E) ATM and DYRK1B act
epistatically to mount DISC. U2OS-DSB reporter cells
pretreated with DMSO or the indicated inhibitor(s)
were induced with 4-OHT and Shield-1. Relative MFI
of YFP-MS2 foci is shown and bars represent mean ±
SEM; ****P < 0.0001; ns, not significant.
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transcriptional activities on damaged chromatin, DYRK1B in-
hibition led to sustained accumulation and phosphorylation of
RNAPII at FokI-induced DSBs in U2OS-DSB reporter cells (SI

Appendix, Fig. S3 D–G). Together, these findings suggest that
DYRK1B may regulate transcriptional activities at DSBs in an
epistatic manner with ATM.
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Fig. 2. DYRK1B promotes DSB-induced transcription silencing. (A) U2OS-DSB reporter cells transfected with control (siCTR) or DYRK1B-specific siRNAs
(siDYRK1B-1 and siDYRK1B-2) were induced with Dox, 4-OHT, and Shield-1 for 3 h. Cells were processed for fluorescence imaging to quantify MFI of YFP-MS2
or Western blotting experiments using the indicated antibodies. Arrowheads denote YFP-MS2 foci. Bars represent mean ± SEM; ***P < 0.001, ****P < 0.0001.
(B) Schematic illustration of a 5-EU incorporation experiment to analyze nascent transcription. (C) HeLa cells transfected with control (siCTR) or DYRK1B-
specific siRNAs (siDYRK1B-1 and siDYRK1B-2) were processed for laser microirradiation. Fixed cells were labeled for 5-EU and γH2AX. Nuclei were counter-
stained with DAPI. Representative images and quantification of relative 5-EU fluorescence intensity are shown. Arrowheads denote sites of laser micro-
irradiation. Western blotting using the indicated antibodies was performed to evaluate RNAi depletion of DYRK1B. A.U., arbitrary units. (D) U2OS-DSB
reporter cells pretreated with the indicated siRNAs were transfected with Myc vector or Myc-tagged DYRK1B WT and kinase mutants (K140M or D239A). Cells
were processed 24 h posttransfection as in A and YFP-MS2 foci were analyzed and quantified. Western blotting experiments were performed to evaluate
expression of Myc-DYRK1B alleles. Bars represent mean ± SEM; ***P < 0.001, ****P < 0.0001.
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DYRK1B Is Recruited to DSBs.We next examined whether DYRK1B
may play a direct role in DSB-flanking chromatin. To this end, we
tested whether DYRK1B may be mobilized in response to DNA
damage. Intriguingly, we found that laser microirradiation trig-
gered swift and transient accumulation of green fluorescent pro-
tein (GFP)-tagged DYRK1B at DNA damage tracks (Fig. 3A). To
decipher how DYRK1B docks at DSBs, we generated a panel of
DYRK1B deletion mutants and analyzed their ability to accu-
mulate at laser-induced DNA damage tracks (Fig. 3 B and C).
Interestingly, we found a strict requirement of the DYRK1B ki-
nase domain in supporting its accumulation at DSBs (Fig. 3D and
SI Appendix, Fig. S4A), and that its kinase domain itself suffices in
docking at laser-induced DNA damage tracks (Fig. 3 B and E). To
examine if kinase activity is required for DYRK1B DSB accu-
mulation, we monitored the dynamics of DYRK1B kinase-inactive
mutants (i.e., K140M and D239A) at laser-induced DNA damage
tracks. In contrast to the kinase domain deletion mutant, GFP-
DYRK1B K140M and D239A displayed robust accumulation at
laser-microirradiated sites (SI Appendix, Fig. S4B), suggesting that
DYRK1B kinase activity per se is not a prerequisite for its re-
cruitment to DSBs.
Given that PARP plays an early role in mobilizing early re-

spondents to DSBs (27), we chemically inhibited PARylation us-
ing olaparib and examined whether DYRK1B accumulation at
laser-induced DNA damage tracks requires PARP activity. We
also pretreated cells with ATM- and ATR-specific inhibitors to
explore whether these master regulators of DDRs are necessary
for DYRK1B docking on damaged chromatin. Accordingly, while
GFP-DYRK1B accumulation at laser-induced DSBs was only
marginally attenuated in ATM/ATR-inhibited cells, PARP in-
hibition completely precluded DYRK1B from concentrating at
DNA damage sites (Fig. 3F and SI Appendix, Fig. S4C). Inhibiting
ATM and ATR, on the other hand, led to a substantial delay in
GFP-53BP1 recruitment to laser-microirradiated sites (SI Appen-
dix, Fig. S4D). Noting that DYRK1B is endowed with transcrip-
tion regulatory roles on DSB-flanking chromatin, we also tested

whether global transcription suppression may impact its migration
to DSBs. Interestingly, chemical inhibition of transcription using a
panel of small molecules that target different components of the
host transcription apparatus led to quantitative attenuation of
DYRK1B accumulation at DSBs (Fig. 3G and SI Appendix, Fig.
S4E). These data led us to postulate that DYRK1B may prefer-
entially target DSBs on transcribed chromatin.

DYRK1B Facilitates DSB Repair. Our observations that DYRK1B
promotes transcription silencing on DSB-flanking chromatin
prompted us to test whether DYRK1B kinase may be required for
efficient DNA repair. To this end, we measured DNA repair ki-
netics following cell exposure to ionizing radiation (IR) using the
comet assay. In support of a role of DYRK1B in DSB repair, IR-
induced DNA damage persisted in DYRK1B-inactivated cells (SI
Appendix, Fig. S5A). Moreover, expression of wild-type DYRK1B
but not its kinase-inactive mutants alleviated the DNA repair de-
fect in DYRK1B-silenced cells (Fig. 4A), highlighting a role of its
kinase activity in orchestrating DSB repair processes. To consoli-
date a role of DYRK1B in DSB repair, we further analyzed
chromosome stability by scoring chromosome breaks in DYRK1B-
deficient cells following IR treatment. Consistently, we found that
DYRK1B promotes repair of IR-induced chromosome breaks
(SI Appendix, Fig. S5B) and that its kinase activity is similarly
required for recovery from IR treatment (Fig. 4B). Together,
these data implicate DYRK1B-dependent transcription silencing
as a key event that fine-tunes DSB repair.

Global Transcription Shutdown Alleviates DNA Repair Defects in
DYRK1B-Inactivated Cells. That DYRK1B may preferentially tar-
get DSBs on transcribing chromatin (Fig. 3G and SI Appendix,
Fig. S4E) and is important for efficient DNA repair led us to
speculate whether the kinase may facilitate repair of DSBs within
transcriptionally active chromatin. We explored this possibility
by performing both the comet assay (Fig. 4C) and by scoring
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Fig. 3. DYRK1B is recruited to laser-induced DSBs.
(A) Cells expressing GFP-DYRK1B or GFP alone were
laser microirradiated and time-lapse images were
captured to analyze protein accumulation at DNA
damage tracks. Quantification of GFP-DYRK1B or
GFP accumulation at DSBs was performed. Arrow-
heads denote sites of laser microirradiation. (B and
C) Schematics and steady-state expression level of
DYRK1B and its deletion mutant are shown. FL, full
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expressing GFP-DYRK1B or mutants (B) were laser
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cells expressing GFP-DYRK1B were pretreated with
the indicated inhibitors prior to laser micro-
irradiation. Cells were processed as in A and repre-
sentative images are shown as in D.
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Fig. 4. DYRK1B facilitates repair of IR-induced DNA damage. (A) DYRK1B-silenced cells reconstituted with Dox-inducible expression vector (TRE-Vector-Flag)
or those that harbor DYRK1B alleles were induced with doxycycline. Twenty-four hours posttreatment, cells were irradiated and allowed to recover. Cells
were thereafter processed for the comet assay according to standard procedures. Relative tail moment of at least 200 cells from two independent experi-
ments was quantified using ImageJ and results were plotted. Western blotting was performed to examine the expression of DYRK1B using the indicated
antibodies. The asterisk denotes the protein band that corresponds to endogenous DYRK1B. Bars represent mean ± SEM; ****P < 0.0001. (B) Representative
metaphase preparations from IR-treated HeLa derivatives are shown. HeLa cells lentivirally infected with DYRK1B gRNA (DYRK1B gRNA#1) were recon-
stituted with vector or DYRK1B alleles. Cells were thereafter irradiated and processed to determine the number of chromosomal breaks. At least 120
metaphases from two independent experiments were counted and results were plotted. Arrowheads denote chromosome breaks. Bars represent mean ±
SEM; *P < 0.05, ****P < 0.0001. (C) Scheme depicting cell processing for the neutral comet assay following transient global inhibition of transcription using
DRB. (D) Western blotting was performed to evaluate the expression of DYRK1B. (E) Representative images from single-cell electrophoresis to analyze relative
tail moments. Quantification is shown and was derived from at least 200 cells from two independent experiments. Bars represent mean ± SEM; ***P < 0.001,
****P < 0.0001. (F) Scheme depicting cell processing for metaphase analyses following transient global inhibition of transcription using DRB. (G) Repre-
sentative metaphase preparations from IR-treated HeLa derivatives are shown. The numbers of chromosomal breaks were quantified in HeLa cells processed
as in B with or without pre-DRB treatment. Bars represent mean ± SEM; *P < 0.05, **P < 0.01.
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chromosome breaks (Fig. 4F) with IR-challenged cells pretreated
with the transcription inhibitor DRB. Notably, global transcription
shutdown not only alleviated the DNA repair defect associated
with DYRK1B loss (Fig. 4 D and E) but also suppressed chro-
mosome breaks in otherwise DYRK1B-inactivated cells (Fig. 4G).
Together, these data suggest that DYRK1B may facilitate repair
of DSBs by orchestrating local transcriptional activities.

Phosphoanalysis of DYRK1B Substrates Identifies DISC Factors.Given
the requirement of DYRK1B kinase activity in orchestrating DSB-
induced transcription silencing and in DNA repair, we performed
a global profiling of DYRK1B targets with the aim to delineate
how DYRK1B mediates these DSB responses (Fig. 5A). We
sampled and enriched phosphopeptides obtained from parental
RPE-1 cells as well as DYRK1B-overexpressing and DYRK1B-
inactivated counterparts. Accordingly, bioinformatic analyses of
phosphopeptides revealed a high degree of overlap between pa-
rental RPE-1 cells and those that overexpress DYRK1B, as well as
those between the two isogenic DYRK1B gRNA-targeted cell
lines (SI Appendix, Fig. S6A). Notably, analysis of phosphopep-
tides that are significantly enriched in cells with ectopic expression
of DYRK1B overexpression over its knockout counterparts
(KO1+KO2) (Fig. 5B and Dataset S2) uncovered that DYRK1B
preferentially targets substrates on the serine/threonine-proline
(S/T-P) motif (Fig. 5C). Furthermore, Gene Ontology (GO)
enrichment analysis of putative DYRK1B targets indicated that
DYRK1B may be involved in a plethora of biochemical path-
ways, including those that regulate transcription (Fig. 5D, SI
Appendix, Fig. S6B, and Dataset S3).
With a focus to decipher how DYRK1B mediates DISC, we

selected a number of candidates from transcription-related path-
ways (Fig. 5D, SI Appendix, Fig. S6C, and Dataset S3) and per-
formed an RNA interference (RNAi)-based validation screen to
isolate novel players that are important in transcription suppres-
sion on damaged chromatin (Fig. 5E). Among those that are re-
quired for DISC, we were drawn to EHMT2 (also known as G9a),
as it has established roles in gene repression (28) and represents a
promising drug target for cancer (29). More recently, EHMT2 has
also been implicated in cell responses to DNA damage (30–32).
Accordingly, we confirmed the DYRK1B–EHMT2 interaction
using a coimmunoprecipitation approach (SI Appendix, Fig. S7A)
and that DYRK1B promotes EHMT2 phosphorylation in a
kinase-dependent manner (SI Appendix, Fig. S7B).

EHMT2 Promotes Transcription Silencing on Damaged Chromatin. In
line with a requirement of EHMT2 in pausing transcriptional ac-
tivities proximal to FokI-induced DSBs in U2OS-DSB reporter
cells (Figs. 5E and 6A), genetic inactivation of EHMT2 also led to
sustained 5-EU incorporation at laser-induced DNA damage
tracks (Fig. 6B). Given that EHMT2 is endowed with histone ly-
sine methyltransferase activity (28), we chemically inhibited
EHMT2 using UNC0638 to examine if its catalytic activity may
be required for transcription suppression on DSB-flanking
chromatin (33, 34). Indeed, chemical inhibition of EHMT2 led
to sustained nascent transcription at FokI-induced DSBs as well
as at laser-induced DNA damage tracks (Fig. 6 C and D). To
further corroborate a role of EHMT2 activity in DISC, we
reconstituted EHMT2-inactivated cells with either wild-type
EHMT2 or its catalytic mutant (ΔSET) and assayed if its
methyltransferase activity is required for transcription silencing
at FokI- and laser-induced DSBs. In line with a requirement of
EHMT2 activity in DISC, reexpression of wild-type EHMT2 but
not its ΔSET mutant in EHMT2-inactivated cells restored
transcription suppression following DSB induction (Fig. 6 E and
F). Together, these data establish the histone methyltransferase
EHMT2 as an important activity in mounting DISC.

DYRK1B Promotes EHMT2 Accumulation at DSBs. To further explore
how DYRK1B may effect DISC via EHMT2 phosphorylation,
we first examined if EHMT2 recruitment to DSBs may depend on
DYRK1B. Time-lapse imaging of GFP-EHMT2 following laser
microirradiation indicated that DYRK1B enforces EHMT2 ac-
cumulation at DSBs, as GFP-EHMT2 recruitment was quantita-
tively attenuated in DYRK1B-inactivated cells (Fig. 7A) as well as
in DYRK1B-inhibited cells (SI Appendix, Fig. S7C), although
DYRK1B deficiency did not noticeably alter EHMT2 protein
expression level (SI Appendix, Fig. S7D). Moreover, similar to
those that underlie DYRK1B recruitment to DSBs, EHMT2 de-
position at DSBs required PARP and transcriptional activities (SI
Appendix, Fig. S7C). These findings prompted us to investigate
whether DYRK1B may promote EHMT2 deposition at DSBs via
its phosphorylation. To this end, we generated EHMT2 phos-
phomutants (i.e., T346A and T346D) according to the DYRK1B-
enriched EHMT2 phosphopeptide (Fig. 7 B and C and Dataset
S3C), and examined their migration kinetics to laser-induced
DSBs. Notably, while the nonphosphorylatable T346A mutation
partially hampered EHMT2 recruitment to DSBs, the phospho-
mimicking T346D mutant accumulated with much more robust
kinetics when compared with wild-type EHMT2 (Fig. 7D). These
data suggest that DYRK1B facilitates EHMT2 docking at DSBs,
at least in part, via targeted T346 phosphorylation.

Discussion
In this study, we have uncovered the DYRK1B network as a
branch of mammalian DDR pathways that orchestrates tran-
scriptional activities on damaged chromatin for effective DNA
repair (Fig. 7E). By conducting a kinase inhibitor library screen,
we identified DYRK1B as a S/T-P-targeting kinase that accu-
mulates at DSBs to promote transcription suppression on DSB-
flanking chromatin. Phosphoprofiling of DYRK1B substrates
further unveiled that DYRK1B-dependent DISC is, at least in
part, effected via EHMT2 phosphorylation and its docking at
DSBs. Our findings thus highlight the DYRK1B kinase as a
specialized mediator of ATM-dependent DDRs that serves to
maintain genome stability of transcribed chromatin.
Our appreciation for the interplay between DSB metabolism

and local transcriptional activities has grown since the in-
troduction of elegant platforms in which DSBs can be induced at
specific genomic loci (6, 7, 35–37), thus permitting the study of
DSB microenvironment (e.g., histone marks) and its impact on
local chromatin transactions (38, 39). Notably, it has now be-
come evident that DSB repair can be dynamic (40, 41) and that
DSB signal output is limited by local chromatin architecture and
activities (36, 42). In particular, the molecular events that un-
derlie transcriptional control on damaged chromatin have gar-
nered much interest (11, 36, 42, 43), in part due to their
emerging impact on genome stability and its relevance to human
diseases. In this connection, seeing that DYRK1B has been as-
sociated with a metabolic syndrome (20), we subcloned the
clinically derived DYRK1B mutations (i.e., H90P and R102C)
and examined their impact on DYRK1B-dependent DDRs (SI
Appendix, Fig. S8). Intriguingly, while both DYRK1B mutations
compromised DSB repair in the comet assay (SI Appendix, Fig.
S8A), R102C exhibited perturbed DSB recruitment kinetics (SI
Appendix, Fig. S8B) and failed to suppress transcription follow-
ing FokI- and laser-induced DSBs (SI Appendix, Fig. S8 C and
D). Given the emerging links between DSB repair and metabolic
homeostasis (44), it would be of significant interest to explore
how defective DISC may impact cell differentiation and tissue
homeostasis.
Global phosphoprofiling of DYRK1B targets led to the

uncovering of the histone lysine methyltransferase EHMT2 as one
of the candidate downstream effectors that promotes DSB-induced
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transcription silencing (Fig. 5). Indeed, that EHMT2 plays estab-
lished roles in gene repression (28) suggested that the DYRK1B–
EHMT2 axis may represent a novel branch of DDRs with

specialized roles in preserving transcriptionally active chromatin. In
line with this notion, we found that DYRK1B targets EHMT2 at a
highly conserved S/T-P motif (Fig. 7B) and that EHMT2 carrying

A B C

D

E

Fig. 5. Global phosphoproteomic identification of DYRK1B substrates. (A) Schematic diagram of phosphoproteomic analysis using high-resolution mass
spectrometry. (B) Heatmap expressing the different relative abundances of phosphopeptides between parental cells, DYRK1B overexpression (OE) cells, and
DYRK1B knockout (KO) cells. (C) DYRK1B phosphorylation motif determined from the significantly enriched phosphopeptides in OE vs. KO samples. (D) Top
biological process GO: terms related to transcription within the total top 50 terms as determined by EnrichR comparing OE with KO cell lines. The size of the
data points signifies the number of significant proteins within each pathway. Data represent four biological replicates. FDR, false discovery rate. (E) RNAi-
based validation screen for DYRK1B targets in DISC. U2OS-DSB reporter cells pretreated with the indicated siRNA pools were induced with Dox, 4-OHT, and
Shield-1. Arrowheads denote YFP-MS2 foci. Cells were thereafter processed to visualize mCherry-FokI and YFP-MS2 foci.
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Fig. 6. EHMT2 promotes transcription silencing on damaged chromatin. (A) EHMT2 inactivation compromised DSB-induced transcription silencing. U2OS-DSB
reporter cells lentivirally transduced with the indicated gRNAs were incubated with Dox, 4-OHT, and Shield-1 to induce DSBs proximal to the transcription
unit. Thereafter, cells were processed to visualize YFP-MS2 and mCherry-FokI foci. Nuclei were counterstained with DAPI. Arrowheads denote YFP-MS2 foci.
MFI of YFP-MS2 was quantified. Bars represent mean ± SEM; ****P < 0.0001. Western blotting was performed to evaluate expression of EHMT2. (B) EHMT2
silencing led to sustained nascent transcription at laser-induced DSBs. HeLa cells transduced with the indicated gRNAs were laser microirradiated. Cells were
processed 1 h after to evaluate 5-EU incorporation at laser-induced DNA damage tracks. Arrowheads denote sites of laser microirradiation. Quantification of
5-EU incorporation at laser-induced γH2AX-marked DSBs was performed. Data represent mean ± SEM from three independent experiments. Western blotting
was performed to evaluate expression of EHMT2. (C and D) Chemical inhibition of EHMT2 attenuated DISC. Cells pretreated with either ATM inhibitor
(KU55933) or EHMT2 inhibitor (UNC0638) were processed for visualization of mCherry-FokI and YFP-MS2 (C) or 5-EU incorporation assay (D). Representative
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as in A or the 5-EU incorporation assay as in B. Quantification andWestern blotting analyses were performed as in A and B. Note that the EHMT2 antibodies were
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Fig. 7. DYRK1B facilitates EHMT2 recruitment to DSBs. (A) Control (CTR gRNA) or cells transduced with DYRK1B gRNAs (DYRK1B gRNA#1 and DYRK1B
gRNA#2) were transiently transfected with the GFP-EHMT2 expression construct. Twenty-four hours posttransfection, cells were microirradiated and time-
lapse images were captured to monitor GFP-EHMT2 migration to laser-induced DNA damage tracks. Arrowheads denote sites of laser microirradiation.
Quantification is shown and is derived from two independent experiments of at least 10 cells each. (B) Schematic illustration of EHMT2 protein domains and
the DYRK1B-enriched EHMT2 phosphopeptide surrounding T346. Note that T346 corresponds to T555 in the long isoform of EHMT2. (C and D) GFP-tagged
WT EHMT2 or its phosphomutants (T346A and T346D) were expressed in U2OS cells prior to laser microirradiation and time-lapse imaging experiments as
done in A. (E) Working model depicting DYRK1B in orchestrating transcription suppression on DSB-flanking chromatin. DYRK1B accumulates at DSBs in a
PARP-dependent manner, and promotes EHMT2 T346 phosphorylation and concentration at DSBs to effect DISC.
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the phosphomimetic T346D mutation much more readily accu-
mulates at laser-induced DSBs (Fig. 7D), suggesting that DYRK1B
may promote EHMT2 docking and activity at DSBs. While the
mechanistic details that underlie EHMT2-dependent DISC remain
to be defined, that both chemical inhibition and genetic inactivation
of EHMT2 methyltransferase activity led to sustained nascent
transcription at damaged chromatin (Fig. 6 C–F) suggests that
EHMT2may exert gene repression by contributing to the local DSB
microenvironment, potentially by targeting histone molecules.
Our observation that a number of putative DYRK1B targets

may be important in transcription suppression on DSB-flanking
chromatin (Fig. 5E) suggests that DYRK1B may orchestrate
DSB repair on transcriptionally active chromatin via multipartite
mechanisms. To further explore this possibility, we examined
whether DYRK1B may support DSB recruitment of chromatin-
remodeling complexes and chromatin architectural factors re-
cently implicated in DISC (3, 10). Notably, we found that
DYRK1B deficiency impinged on, to varying extents, migration
of PBAF (i.e., BRD7 and BAF180) and cohesin (i.e., STAG2)
subunits to laser-induced DNA damage tracks but not that of the
Polycomb repressive complex components BMI1 and EZH2 (SI
Appendix, Fig. S9). On the other hand, DYRK1B appears to
have minimal impact on DSB accumulation of the negative
elongation factors NELF-A/E (SI Appendix, Fig. S10) and did
not detectably affect the metabolism of R loops (SI Appendix,
Fig. S11). Together, while DYRK1B likely effects transcription
suppression via multiple targets on DSB-flanking chromatin, the
fact that DYRK1B-associated DSB repair defects can be alle-
viated by global transcription inhibition (Fig. 4 C–G) establishes
DYRK1B and its network as key signaling intermediates that
promote DISC, a dedicated ATM-dependent DSB response that
has evolved to suppress chromosomal instability and maintain
gene expression programs important in cell proliferation and
organismal development. We await further work to decipher how
DYRK1B coordinates local transcription during DSB metabo-
lism and how it translates to DSB repair and maintenance of
chromosome stability.

Materials and Methods
Cell Lines, Cell Culture, Plasmids, and Chemicals. HeLa, U2OS, hTERT RPE-1, and
HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
(Gibco, Thermo Fisher Scientific) at 37 °C in 5% CO2. Details of chemicals,
plasmids, and antibodies are in SI Appendix, Tables S1–S3, respectively.

RNA Interference. Cells were transfected twice at 24-h intervals with either
nontargeting control or gene-specific siRNAs (Dharmacon) using Oligofect-
amine (Invitrogen) according to the manufacturer’s instructions. Sequences
of siRNAs are listed in SI Appendix, Table S4.

Lentiviral Particle Packaging and Transduction. HEK293T cells were transiently
cotransfected with lentiviral-based expression plasmids psPAX2 and pMD2.G
at a ratio of 4:3:1 using polyethyleneimine to produce lentiviral particles.
Forty-eight hours after transfection, supernatants containing lentiviruses
were filtered with an Acrodisc 25-mm syringe filter with a 0.45-μm mem-
brane (PALL Life Sciences) and were used for cell transduction in the pres-
ence of 8 μg·mL−1 polybrene (Sigma-Aldrich).

Genome Editing Using the CRISPR-Cas9 Method. Gene-targeting gRNAs were
subcloned into the LentiCRISPR v2 vector (Addgene; 52961) following stan-
dard procedures. Viral particles containing gRNAs were applied to recipient
cells twice at 24-h intervals in the presence of 8 μg·mL−1 polybrene
(Sigma-Aldrich). Transduced cells were pooled and selected with DMEM
supplemented with 1 μg·mL−1 puromycin (Sigma-Aldrich) for 1 wk. Gene-
edited cells were validated by Western blotting. Sequences of gRNAs are
listed in SI Appendix, Table S5.

Western Blotting and Coimmunoprecipitation. Cells were harvested and lysed
with NETN buffer (20 mM Tris·HCl, pH 8.0, 100 mM NaCl, 0.5% Nonidet P-40,
and 1 mM ethylenediaminetetraacetic acid [EDTA]) supplemented with ben-
zonase nuclease (ChemCruz) for 30 min on ice. Whole-cell lysates were boiled
in sodium dodecyl sulfate (SDS) loading buffer, resolved on polyacrylamide gel
electrophoresis (PAGE), transferred to polyvinylidene fluoride (PVDF) mem-
branes, and immunoblotted with the indicated antibodies. For coimmuno-
precipitation, cells were lysed with NETN buffer for 30 min on ice. After
centrifugation at 15,000 rpm for 15 min at 4 °C, supernatants were incubated
with 200 μL streptavidin-conjugated beads (GE Healthcare, Sigma-Aldrich) for
4 h at 4 °C with gentle rotation. Protein-bound beads were washed with ice-
cold NETN buffer three times and subjected to immunoblotting.

Denaturing Immunoprecipitation.HEK293T cells transiently cotransfectedwith
S protein-Flag-streptavidin–binding peptide (SFB)-tagged EHMT2 mutants
with myc epitope-tagged vector or myc epitope-tagged DYRK1B were lysed
with denaturing buffer (20 mM Tris·HCl, pH 8.0, 50 mM NaCl, 0.5% Nonidet
P-40, 0.5% SDS, 0.5% deoxycholate, and 1 mM EDTA) on ice for 15 min and
subsequently boiled at 95 °C for 5 min. The cell lysates were cooled down on
ice for 5 min and incubated with Anti-Flag Affinity Gel (Bimake.com) for 3 h
at 4 °C with gentle rotation. Protein-bound beads were washed with ice-cold
denaturing buffer four times and boiled with SDS/PAGE sample-loading
buffer before being subjected to immunoblotting.

Immunofluorescence. Cells cultured on coverslips were processed and at the
indicated time points washed with ice-cold 1× phosphate-buffered saline
(PBS) twice and thereafter fixed with 3% paraformaldehyde (PFA) for 30 min
at room temperature. Cells were subsequently permeabilized with 0.5%
Triton X-100 for 30 s after two PBS washes. Coverslips were blocked with 5%
milk before incubating with primary antibodies for 1 h at room tempera-
ture. Cells were then washed twice with PBS and incubated with secondary
antibodies for 40 min. Nuclei were counterstained with DAPI for 10 s before
coverslips were mounted with fluorescence mounting medium (Dako, Agi-
lent) onto glass slides. Images were acquired by an Olympus BX51 fluores-
cence microscope (UPlanSApo 40×/0.95 objective).

Laser Microirradiation and Live-Cell Imaging. Laser microirradiation was car-
ried out on an inverted two-photon microscope (LSM780; Carl Zeiss) equip-
ped with an inverted Axio Observer.Z1 stand, motorized scanning stage, and
integrated laser microbeam system, with total UV laser output set to 750 nm
(8%). Cells cultured on glass-bottomed confocal dishes (SPL Life Sciences)
were subjected to laser microirradiation in a temperature-controlled (37 °C)
environmental chamber supplied with 5% CO2 at 24 h after transient
transfection with GFP-tagged indicated plasmids. Time-lapse images were
acquired by ZEN 2012 (Carl Zeiss) software with a Plan Apochromat 40×/1.4
oil differential interference contrast (DIC) M27 objective and further pro-
cessed by ImageJ software to analyze mean fluorescence intensity (MFI)
across the laser-microirradiated regions. MFI was quantified as the differ-
ence between the average fluorescence intensity in the laser-microirradiated
regions versus the average fluorescence intensity from adjacent undamaged
regions of the same size in the same nucleus.

5-Ethynyl Uridine Incorporation Assay. Nascent transcription at laser-
microirradiated sites was detected by a Click-iT RNA Alexa Fluor 594 Imag-
ing Kit (C10330; Thermo Fisher Scientific). Briefly, cells grown on glass-
bottomed confocal dishes (SPL Life Sciences) for 24 h were subjected to la-
ser microirradiation by a live Carl Zeiss LSM780 inverted confocal microscope
(10× objective) with a 750-nm laser (8% output). Subsequently, cells were
cultured with complete media containing 1 mM 5-EU for 1 h after laser
microirradiation. 5-EU labeling was performed following manufacturer in-
structions. Cells were immunostained for γH2AX and nuclei were counter-
stained with DAPI before mounting. Images were captured by Olympus
BX51 fluorescence microscope (PlanApo N 60×/1.42 oil-immersion objective).
ImageJ was used to analyze relative fluorescence intensity across the laser-
microirradiated stripes. An analyzing line drawn by a line tool was per-
pendicular to the damaged stripes, centered at the stripes with two ends at
undamaged regions, and the fluorescence intensity was multiplotted. Rel-
ative fluorescence intensity was normalized to each end from the same cell.

Chromosomal Aberration Analysis. Chromosomal aberrations were analyzed
by chromosome metaphase spreading. Cells were cultured in media con-
taining 1 μg·mL−1 colcemid (KaryoMAX Colcemid Solution in Hanks’ balanced
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salt solution; Thermo Fisher Scientific) for 3 h after 2-Gy irradiation and sus-
pended in 0.8% sodium citrate for 15 min at 37 °C. Subsequently, freshly
prepared fixative solution (methanol:acetic acid 3:1; vol/vol) was added and
incubated for 5 min at 37 °C. After washing three times by the fixative solu-
tion, cells resuspended in a small volume of fixative solution were dropped
onto alcohol-cleaned slides and air dried. Cells were stained with DAPI before
mounting. Images were captured by a Nikon Ti2-E widefield confocal micro-
scope (100× oil-immersion objective) using MetaMorph microscopy and image
analysis software (Molecular Devices).

Neutral Comet Assay. Cells were harvested and resuspended at 5 × 105 cells
per milliliter in ice-cold Ca2+/Mg2+-free PBS. Diluted cells were fixed with
37 °C molten low-melting agarose (LMAgarose; Trevigen) at a ratio of 1:10
(vol/vol) and cell suspensions (60 μL) were transferred onto prewarmed
comet slides (CometSlide; Trevigen). Slides were kept at 4 °C in the dark for
30 min and immersed in prechilled lysis buffer (2.5 M NaCl, 100 mM EDTA,
10 mM Tris·HCl, 1% N-lauroylsarcosine sodium, and 1% Triton X-100) for 1 h
at 4 °C followed by further immersion in freshly prepared alkaline buffer for
30 min. Slides were washed with 1× TBE buffer (90 mM Tris, 90 mM boric
acid, and 3 mM EDTA) twice and were thereafter subjected to TBE electro-
phoresis at 60 V for 5 min. Slides were then fixed in 100% ethanol for 5 min,
air dried, and stained with 1 μg·mL−1 propidium iodide (Sigma-Aldrich) at
room temperature in the dark for 20 min. Images were captured by an
Olympus BX51 fluorescence microscope (20× objective). Tail moments of
comets were quantified by ImageJ software with the OpenComet plugin.

Kinase Inhibitor Library Screen. A kinase inhibitor library was purchased from
Selleck Chemicals. U2OS-DSB reporter cells, a kind gift from Roger Greenberg
(University of Pennsylvania, Philadelphia, PA) were used to assay transcription
repression following DSB induction (23). DSBs were induced by cell pre-
treatment with Shield-1 and 4-OHT, which promote the nuclear translocation
of the FokI-mCherry-LacI nuclease and its docking at the LacO transgene array.
Nascent transcription at the reporter gene can be monitored by local accu-
mulation of YFP-MS2 upon the addition of 1 μg·mL−1 doxycycline. U2OS-DSB
reporter cells in 96-well microplates (PerkinElmer) were individually incubated
with 10 μM kinase inhibitor for 3 h. Cells were fixed and subjected to a high-
content imaging system (IN Cell Analyzer 6500HS). Dimethyl sulfoxide (DMSO)
and ATM inhibitor (KU55933) were used as negative and positive controls,
respectively. Data were processed by IN Carta analysis software.

Customized siRNA Screen. Customized siRNAs (three siRNAs per gene target)
were purchased from GenePharma to silence selected putative DYRK1B
substrates for a role in DSB-induced transcription repression. U2OS-DSB re-
porter cells were transfected twice at 24-h intervals with either nontargeting
control or gene-specific siRNAs, and local transcription was monitored by
accumulation of YFP-MS2 at the LacO transgene array.

Cell Culture and Induction of DYRK1B for Phosphoproteomic Analysis. Parental
RPE-1, doxycycline-inducible DYRK1B-overexpressing RPE-1 tetracycline response
element (TRE)-DYRK1B, RPE-1-DYRK1B-control, CRISPR-Cas9–mediated RPE-1
DYRK1B-KO#1, and RPE-1 DYRK1B-KO#2 were cultured in DMEM supple-
mented with 10% FBS and 1% penicillin-streptomycin. RPE-1 TRE-DYRK1B-
SFB cells were induced with 1 μg·mL−1 doxycycline for 36 h prior to harvesting.
Cells were harvested by trypsin, washed with PBS, flash frozen, and stored
at −80 °C until needed.

Chloroform/Methanol Extraction and Generation of Tandem Mass Tag
(TMT)-Labeled Tryptic Peptides. Frozen cell pellets were thawed on ice and
resuspended in lysis buffer (2% SDS and 100mMTris·HCl, pH 7.6) supplemented
with fresh protease and phosphatase inhibitors (Pierce) and incubated on ice
for 20 min. Viscosity of the samples was reduced using QIAshredders (Qiagen).
Briefly, the lysed samples were applied to a QIAshredder spin column and
centrifuged at 16,000 × g for 5 min. Protein concentration within the flow-
through was then quantified using a BCA protein assay (Pierce). Volumes
equivalent to 300 μg protein were aliquoted into a fresh 1.5-mL tube and the
volume was adjusted to 100 μL using lysis buffer. Proteins were reduced by
addition of Tris(2-carboxyethyl)phosphine (TCEP) to a final concentration of
5 mM for 30 min at 37 °C. The free cysteine residues were alkylated by in-
cubating with 10 mM iodoacetamide for 30 min protected from light. Proteins
were then extracted by chloroform/methanol extraction with modification
(45). Briefly, 400 μL of methanol was added and the sample was vortexed,
followed by 100 μL of chloroform and vortexing; 300 μL of H2O was added and

vortexed. The samples were centrifuged for 1 min at 14,000 × g. The aqueous
layer was removed and 400 μL of methanol was added followed by vortexing.
The samples were centrifuged at 20,000 × g for 5 min and as much superna-
tant as possible was removed. The samples were dried in a SpeedVac. The
samples were then resuspended in 300 μL of 100 mM triethylammonium bi-
carbonate (TEAB) and sequencing-grade trypsin (Promega) in a protein:trypsin
ratio of 50:1. Samples were tryptically digested overnight at 37 °C. The
following day the samples were acidified with 0.1% formic acid. Acidified
samples were desalted using a Waters C18 Sep-Pak and dried using a Speed-
Vac. Dried peptide samples were resuspended in 100 μL of 100 mM TEAB;
120 μg of peptide for each sample was used for labeling and 10 μL of each
sample was combined to create a pooled sample for normalization between
batches. Eleven-plex TMT labels were equilibrated to room temperature and
centrifuged prior to resuspension in 60 μL of acetonitrile. TMT label (30 μL) was
added to a unique sample and incubated at room temperature for 1 h. The
labeling reaction was quenched by addition of 8 μL 5% hydroxylamine and
incubation for 15 min at room temperature. Five microliters of each labeled
sample was combined and analyzed by mass spectrometry (MS) to check for
proper mixing. Mixing was adjusted according to the results and the combined
samples were desalted by a Waters C18 Sep-Pak and dried by SpeedVac.

Phosphopeptide Enrichment and basic-pH High-Performance Liquid Chromatography
(bHPLC) Off-Line Fractionation of TMT-Labeled Peptides. Pooled TMT-labeled,
tryptic peptides previously dried by SpeedVac were resuspended in phos-
phopeptide binding/wash buffer from the High-Select TiO2 Phosphopeptide
Enrichment Kit (Pierce) and processed for enrichment. The flowthrough
from the TiO2 column was applied to a second phosphopeptide enrichment
kit (the High-Select Fe-NTA Phosphopeptide Enrichment Kit; Pierce), and the
eluates of both kits were dried immediately following elution to prevent loss
of phosphopeptides due to the high pH. Eluates from both kits were
resuspended in basic buffer A (10 mM ammonium hydroxide, pH 10) and
were separated into 36 fractions on a 100 × 1.0-mm Acquity BEH C18 column
(Waters) using an UltiMate 3000 ultra high performance liquid chromatog-
raphy (UHPLC) system (Thermo) with a 40-min gradient from 99:1 to 60:40
basic buffer A:B ratio (buffer B: 10 mM ammonium hydroxide, 99.9% ace-
tonitrile, pH 10), and then consolidated into 18 superfractions.

Multinotch MS3 Analysis of TMT-Labeled Phosphopeptides. Analysis of TMT-
labeled samples was carried out as previously reported (46). In-line reverse-
phase fractionation with Jupiter Proteo resin (Phenomenex) was employed to
further reduce the complexity of each superfraction generated by off-line
bHPLC. The resin was packed into a 200 × 0.075-mm column and HPLC was
carried out on a Waters nanoAcquity ultra performance liquid chromatogra-
phy (UPLC). A 95-min gradient was used to elute samples from the reverse-
phase resin. The gradient consisted of 97:3 to 67:33 buffer A (0.1% formic acid
and 0.5% acetonitrile) to buffer B (0.1% formic acid and 99.9% acetonitrile).
Electrospray ionization at 2.5 kV was used to ionize eluted peptides into an
Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo). Multinotch MS3

reporter ion mass spectra was used to collect peptide sequence information
and TMT reporter ion quantities. The Orbitrap was used to collect profile MS
data over 375 to 1,500m/z at 120,000 resolution. Collision-induced dissociation
at 35.0 normalized collision energy fragmented ions for MS/MS. Centroided
MS2 fragment ion mass spectra data were collected in the ion trap for ions
between 400 and 2,000 m/z. Up to 10 MS2 ions were selected by synchronous
precursor selection and fragmented by high-energy C-trap dissociation at 65.0
normalized collision energy to separate the TMT reporter ions from the pre-
cursors. Profile MS3 data from 100 to 500 m/z were collected at 50,000 within
the Orbitrap for quantification of TMT reporters.

Analysis of Phosphopeptides. Phosphopeptides were identified and reporter
ions were quantified usingMaxQuant (Max Planck Institute) with a parent ion
tolerance of 3 parts per million, a fragment ion tolerance of 0.5 Da, and a
reporter ion tolerance of 0.001 Da. Oxidation of methionine and STY
phosphorylation were searched as variable modifications, and carbamido-
methylation of cysteine residues and TMT-10plex labeling of lysine residues
and N termini of peptides were set as fixed modifications. The data were
searched against the human UniProt database UP000005640 (74,458 proteins
and added known contaminants). MaxQuant data were further analyzed us-
ing R and the packages Limma (47), ggplot2 (48), and heatmaply (49). A sig-
nificance criterion of Limma adjusted P value < 0.05 and a log2 fold change
of ≥1 were employed to produce a “significantly enriched phosphopeptide”
list for each groupwise comparison. Pathway analysis was performed on the
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enriched phosphopeptides for each group using the webtool Enrichr (50) and
GO term complexity was reduced using REVIGO (51).

Statistics and Reproducibility. Quantitative data represent mean ± SEM from
at least three independent experiments unless otherwise noted. Two-tailed
Student’s t test was used for statistical analysis by GraphPad Prism 8. Sta-
tistical differences were considered significant at P < 0.05.

Data Availability Statement. The phosphopeptide data generated in this study
have been uploaded to ProteomeXchange under accession no. PXD019102.
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